Simulation for lattice-valued doubly labeled transition systems
نویسندگان
چکیده
منابع مشابه
LATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES
We study L-categories of lattice-valued convergence spaces. Suchcategories are obtained by fuzzifying" the axioms of a lattice-valued convergencespace. We give a natural example, study initial constructions andfunction spaces. Further we look into some L-subcategories. Finally we usethis approach to quantify how close certain lattice-valued convergence spacesare to being lattice-valued topologi...
متن کاملMonoid-labeled transition systems
Given a ∨ -complete (semi)lattice L, we consider L-labeled transition systems as coalgebras of a functor L(−), associating with a set X the set LX of all L-fuzzy subsets. We describe simulations and bisimulations of L-coalgebras to show that L(−) weakly preserves nonempty kernel pairs iff it weakly preserves nonempty pullbacks iff L is join infinitely distributive (JID). Exchanging L for a comm...
متن کاملDifferencing Labeled Transition Systems
Concurrent programs often use Labeled Transition Systems (LTSs) as their operational semantic models, which provide the basis for automatic system analysis and verification. System behaviors (generated from the operational semantics) evolve as programs evolve for fixing bugs or implementing new user requirements. Even when a program remains unchanged, its LTS models explored by a model checker ...
متن کاملState-event Observers for Labeled Transition Systems
In many Discrete-Event Systems (DES) both state and event information are of importance to the systems designer. As a first step towards obtaining hierarchical models of systems, the behavior of Discrete-Event Systems with unobservable transitions and state output maps is considered. Observers for deterministic DES are generalized to nondeterministic DES and characterized using the join semilat...
متن کاملα-Resolution Method for Lattice-valued Horn Generalized Clauses in Lattice-valued Propositional Logic Systems
In this paper, an α-resolution method for a set of lattice-valued Horn generalized clauses is established in lattice-valued propositional logic systemL P(X) based on lattice implication algebra. Firstly, the notions of lattice-valued Horn generalized clause, normal lattice-valued Horn generalized clause and unit latticevalued Horn generalized clause are given in L P(X). Then, the α-resolution o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2014
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2013.11.009